Широкое применение в диагностике остеопороза (ОП) нашли биохимические методы, позволяющие определить маркеры состояния костной ткани, которые условно можно разделить на 2 группы. Первую группу составляют биохимические показатели, позволяющие в первом приближении определить тип ОП и установить патогенетические механизмы его возникновения. В эту группу маркеров входят гормоны (эстрогены, кальцитонин, ПТГ, тиреоидные гормоны, витамины), концентрации некоторых ионов (Са, Р и Mg в крови и утренней моче), активность общей щелочной фосфатазы, а также экскреция с мочой кальция и общего гидроксипролина (ГП). В целом группа этих рутинных маркеров мало специфична, их значения определяются не только костным метаболизмом.
Биохимические методы диагностики остеопороза
В последние годы наблюдается значительный прогресс в разработке новых биохимических методов диагностики ОП, непосредственно отражающих состояние «костного оборота» и являющихся наиболее перспективными для широкого лабораторного применения. Клиническая значимость специфических биохимических маркеров остеопороза определяется следующими основными достоинствами:
- позволяют диагностировать быструю потерю костной массы;
- дают информацию о средней скорости ремоделирования всего скелета, а не отдельных его областей;
- позволяют оценить риск переломов кости;
- являются важными параметрами для оценки эффективности лечения и реабилитации больных;
- могут быть использованы для проведения скрининговых, в том числе, популяционных исследований;
- необходимы для объективизации эффективности мероприятий по профилактике ОП.
С практической точки зрения выделяют биохимические маркеры формирования и резорбции кости, характеризующие функции, соответственно, остеобластов и остеокластов. К биохимическим маркерам формирования кости относятся костный изофермент щелочной фосфатазы (КЩФ), остеокальцин, а также карбокси- и аминотерминальные фрагменты (пропептиды) проколлагена 1 типа. К биохимическим маркерам резорбции кости относятся фрагменты поперечных сшивок коллагена I типа – пиридинолин и дезоксипиридинолин, карбокси- и аминотерминальные телопептиды коллагена I типа (KTTKI и ATTKI), фрагменты KTTKI т.н. а и (3-кросслапы, галактозилгидроксилизин (ГГЛ), маркер функции остеокластов тартратрезистентная кислая фосфатаза (ТРКФ), остеопротегерин и остеопротегерин-лиганд (RANKL).
- Маркеры костного формирования. Идеальный маркер костеобразования должен быть структурным белком, высвобождающимся в кровь со скоростью, пропорциональной его включению в кость, и свободная фракция не должна изменяться при различных заболеваниях. Он не должен также высвобождаться неизменным в процессе костной резорбции. Необходимым условием является также знание метаболических превращений маркера и времени его полужизни. Несмотря на то, что ни один из определяемых в настоящее время маркеров не отвечает всем требованиям, многие из них хорошо отражают остеобластическую функцию.
- Костный изофермент шалочной Фосфатазы. Его исследование, наряду с определением общей активности 1ДФ, существенно повышает точность дифференциальной диагностики заболеваний скелета и печени. КЩФ – фермент, локализованный на мембране остеобластов и высвобождающийся в кровоток в процессе их жизнедеятельности. Период полужизни фермента – 24-48 ч. Изоферменты печеночного и костного происхождения кодируются одним геном и отличаются только вследствие посттрансляционных модификаций. Разработаны высокоспецифичные иммунорадиометрические и иммуноферментные методики определения КЩФ. Уровень КЩФ является чувствительным маркером ускоренного метаболизма кости во время менопаузы: повышение активности этого изофермента достоверно превосходит увеличение содержания общей ЩФ. Значительное повышение активности КЩФ наблюдается также при первичном и вторичном ОП, остеомаляции, связанной с дефицитом витамина D.
- Остеокальцин – маркер остеобластической активности. Уникальность структуры ОК, содержащей три остатка у-карбоксиглутаминовой кислоты, заключается в высокой способности к связыванию с гидроксиапатитом. Часть синтезированного de novo ОК проникает в системный кровоток, где может быть обнаружена различными методами, наиболее употребительными из которых в настоящее время являются иммуноферментные. Циркулирующий ОК имеет короткий период полужизни (15-70 мин) и быстро выводится почками. Уровень ОК в сыворотке крови коррелирует с ростом скелета в период полового созревания и повышается при ряде заболеваний, которым свойственно увеличение скорости ремоделирования кости – гиперпаратирео- зе, гипертирсозе, акромегалии. Напротив, он понижается при гипотиреозе, гипопаратиреозе, гиперкортицизме. Сравнение уровня сывороточного ОК с результатами гистоморфометрии костных биоптатов и данными кинетических исследований кальциевого обмена показало, что ОК служит адекватным маркером скорости ремоделирования при сопряжении процессов резорб- ции/синтеза костной ткани, и специфическим маркером костеобразования при разобщении резорбции и синтеза костной ткани.
- Пропептиды проколлагена I типа образуются в результате внеклеточного процессинга проколлагена I типа путем отщепления N- и С-концевых пептидов. Оба типа пропептидов циркулируют в сыворотке крови в виде отдельных цепей с м.м. около 100 кД, что делает доступным их прямое определение методом иммуноферментного анализа. Возможность их использования в качестве маркеров формирования костной ткани до сих обсуждается из-за недостаточной чувствительности и специфичности.
- Маркеры костной резорбции. Идеальный маркер остеокластической активности должен быть продуктом деградации компонентов костного матрикса, но не присутствовать в других тканях. Его уровень в крови не должен зависеть от эндокринных факторов и он не должен реутилизироваться в процессе очередного цикла костного формирования.
- Галактозилгидроксилизин – гликозилированная аминокислота, характерная для костной ткани, считается весьма специфическим индикатором распада костного коллагена. В отличие от гидроксипролина, ГГЛ не только не используется повторно для синтеза коллагена, но и не подвергается катаболизму. Кроме того, его содержание в моче практически не зависит от характера питания. Уровень ГГЛ в моче рассчитывают по отношению к концентрации креатинина. Отношение ГГЛ/креатинин повышается при менопаузе, причем оно обратно пропорционально плотности кости.
- Пиридинолин и дезоксипиридинолин являются фрагментами поперечных сшивок коллагена I типа. Стабильность коллагенового матрикса обеспечивается межмолекулярными связями, образующимися между гидроксили- зином и лизином, входящими в полипептидную цепь коллагена. Лизилоксидаза окисляет остатки гидроксилизина до альдегидов, которые конденсируются с остатками гидроксилизина или лизина соседних молекул коллагена и образуют перекрестные сшивки между двумя полипептидными цепями. При дальнейшей конденсации с новым альдегидом формируются два типа мостиков между тремя молекулами коллагена – ПИД и ДПИД. ПИД формируется из трех остатков гидроксилизина, ДПИД – из двух остатков гидроксилизина и одного остатка лизина.
- Общая концентрация ПИД и ДПИД в кости составляет всего 0,3 моль/моль коллагена, из них на долю последнего приходится 22%. Наличие в моче молекул с пиридиновыми сшивками свидетельствует об активном процессе резорбции костной ткани. В качестве показателя резорбции определение этих маркеров имеет ряд преимуществ перед традиционным тестом на гидроксипролин. В отличие от гидроксипролина, сшитые пиридином аминокислоты не подвергаются катаболизму и полностью экскретируются. Кроме того, они практически не всасываются в пищеварительном тракте, поэтому их уровень не зависит от характера питания.
- В многочисленных работах последних лет показано, что экскреция с мочой ПИД/ДПИД значительно возрастает у женщин в менопаузе и снижается до пременопаузального уровня на фоне лечения эстрогенами. У пациентов с ОП позвоночника уровень в моче ПИД и особенно ДПИД хорошо коррелирует со скоростью костного обмена, измеренного гистоморфометрически и с помощью кальцийкинетических методов. Для оценки резорбции кости используется определение отношения ПИД или ДПИД к концентрации креатинина в утренней порции мочи.
- Продукты деградации коллагена I типа (карбокси- и аминотерминальные телопептиды – СТХ и NTX, соответственно). Во время обновления костной ткани коллаген I типа деградирует и небольшие поперечно сшитые пептидные фрагменты попадают в кровь и выделяются почками. Продукты распада коллагена можно определять как в моче, так и сыворотке с использованием тест-систем различных производителей. Для первичного ОП характерно увеличение карбокситерминального телопептида (СТХ, коммерческие наборы CrossLaps): показано, что в период менопаузы маркер резорбции CrossLaps увеличивается в сыворотке крови и моче почти в 2 раза.
- Тартратрезистентная кислая фосфатаза – маркерный фермент остеокластов, является железосодержащим гликопротеином массой 30-40 кДа. Увеличение ее уровня отмечено при различных метаболических заболеваниях костей, сопровождающихся ускорением обмена костной ткани. Активность фермента во всех случаях была обратно пропорциональна плотности кости.
- Остеопротегерин (OPG) и остеопротегерин-лиганд (RANKL) – новые перспективные анализы, путь от появления первого сообщения об обнаружении которых до внедрения в клиническую практику составил рекордно короткие сроки – 2-3 года. RANKL, вероятно, является наиболее адекватным маркером костной резорбции, когда его уровень повышается. Определение уровня RANKL целесообразно проводить параллельно с определением его анатагониста OPG. Основные показания для использования тест- систем RANKL/OPG:
- первичный ОП;
- глюкокортикоидиндуцированный ОП;
- мониторинг терапии OPG;
- артриты;
- онкозаболевания.
Перечисленные маркеры обладают различной диагностической ценностью, однако в целом можно констатировать, что они достаточно информативны. Так, показано, что в период менопаузы увеличиваются уровни маркеров резорбции и образования кости в среднем, соответственно, на 79-97% и 37-52%. На фоне адекватного лечения все значения маркеров значительно уменьшались. Процент снижения значений коррелирует с увеличением плотности кости, о чем судят по показателям денситометрии. При этом биохимические маркеры значительно раньше позволяют определить эффективность лечения (например, уровень КТТК уже через 2 недели после начала терапии снижается в среднем на 25%), чем измерение плотности костной ткани (надежные данные можно получить не ранее чем через 6-12 мес).
Было также продемонстрировано, что для оценки эффективности терапии и предсказания возможности переломов более информативны маркеры резорбции, чем маркеры формирования кости. Высокая чувствительность маркеров резорбции кости в отношении реакции организма на специфическое лечение позволяет вовремя скорригировать методы терапии.
Биохимические маркеры костного метаболизма обладают высокой прогностической ценностью. Так, высокие уровни маркеров резорбции кости (превышение более чем на 2 SD), увеличивают риск переломов в 2 раза. Вместе с тем, превышение более чем на 3 SD свидетельствует об иной природе костной патологии, включая злокачественную. Более того, результаты одновременного однократного анализа ОК, ДПИД и ГП могут прогнозировать скорость последующей потери костной ткани на протяжении 2 лет, а у женщин, отнесенных на основании определения биохимических маркеров к категории лиц с быстрой потерей костной ткани (более 3% в год), повышенная скорость утраты сохраняется на протяжении последующих 12 лет.
Исследование базального уровня биохимических маркеров позволяет также предсказать эффективность терапии ОП. Установлено, что чем выше уровень NTX, КЩФ и ОК до начала лечения, тем больше процент увеличения плотности кости через год гормонзаместительной терапии.
Международный фонд по исследованию остеопороза для оценки процессов костеобразования и для мониторинга антирезорбционной терапии рекомендует использовать два маркера: ОК и КТТК. В последние годы с целью оптимизации диагностического процесса активно внедряются полностью автоматические системы определения этих маркеров при помощи элек- трохемилюминесцентных анализаторов, что обеспечивает высокую воспроизводимость, точность и надежность. Такой подход позволяет экономить реактивы, сыворотку и время, кроме того, допускает выполнение не только серийных, но и единичных наблюдений, что важно для динамического наблюдения.
Заключение
Таким образом, в настоящее время клиническая медицина располагает широким арсеналом новых диагностических возможностей, использование которых имеет существенное значение как для прогнозирования риска остеопоретических переломов, так и для оценки эффективности специфической терапии.
В этом разделе мы публикуем статьи и материалы по медицинской тематике, присланные нашими читателями.
Если у вас есть что-то интересное, чем бы вы хотели поделиться с другими людьми, мы будем рады разместить вашу статью на нашем сайте.
Внимание!
В случае, если присланный вами материал не соответствует тематике сайта, он не будет опубликован без объяснения причины отказа в публикации. Если в вашей статье имеются ссылки, или статьи будут носить рекламный характер, то Вам сюда.
Защита авторских прав!
Присланный вами материал не должен нарушать авторских прав. Если это ваш материал, укажите ваше имя, и оно будет опубликовано в статье. В случае, если вы являетесь правообладателем и заметили, что размещенный на сайте материал нарушает ваши авторские права, напишите нам, этот материал будет немедленно удален с сайта. В письме приложите доказательства того, что вы являетесь автором материала или правообладателем.
По вопросам размещения пишите письма на email — [email protected]