Искусственный интеллект начинают применять в диагностике генетических заболеваний

Исследователи из Детского института геномной медицины Рэди (RCIGM) в Сан-Диего использовали процесс машинного обучения и клиническую обработку естественного языка (CNLP) для диагностики редких генетических заболеваний в рекордно короткие сроки. Результаты исследования опубликованы в журнале Science Translational Medicine.

Актуальность проблемы

Новый метод открывает двери для более широкого использования секвенирования генома в качестве диагностического теста первой линии у детей с генетическими заболеваниями.

«Используя современные компьютерные технологии, мы можем быстро и точно определить первопричину генетических заболеваний, предоставляя важную информацию врачам», — утверждает автор исследования Стивен Кингсмор (Stephen Kingsmore). 

Материалы и методы обследования

Ученые ввели в действие быстрый процесс секвенирования всего генома, чтобы предоставить результаты генетических тестов врачам. Ключевым элементом системы машинного обучения является платформа MOON от Diploid, которая автоматизирует интерпретацию генома с использованием искусственного интеллекта (ИИ) для автоматической фильтрации и ранжирования вероятных патогенных вариантов. Глубокая интеграция фенотипов, основанная на обработке медицинской литературы, является одной из ключевых особенностей этой автоматической интерпретации.

В рамках исследования данные генетического секвенирования были переданы на автоматизированные вычислительные платформы под наблюдением исследователей. Учеными использовались алгоритмы Fabric Genomics, основанные на искусственном интеллекте — VAAST и Phevor.

Результаты научной работы

Сокращая потребность в трудоемком ручном анализе геномных данных, контролируемый автоматизированный конвейер обеспечил значительную экономию времени. В феврале 2018 года ученые установили рекорд Гиннеса в быстрой диагностике с помощью секвенирования всего генома. Из автоматизированных прогонов самое быстрое время — в среднем 19 часов — было достигнуто с использованием искусственного интеллекта.

«Это действительно новаторская работа — спасение жизней больных новорожденных детей с помощью ИИ для быстрого и точного анализа всей последовательности их генома», — объясняет Стивен Кингсмор.

Для платформы MOON требуется 5 минут, чтобы предположить возможную мутацию из 4,5 миллионов вариантов в целом геноме. Ученым удалось перевести клиническую информацию в вычислимый формат для управляемой интерпретации вариантов. Ученые обнаружили, что автоматизированные ретроспективные диагнозы совпали с интерпретацией, сделанной экспертом вручную (97%, 99% точности у 95 детей с 97 генетическими заболевания). Исследователи пришли к выводу, что секвенирование генома с автоматическим фенотипированием и интерпретацией может стимулировать использование в отделениях интенсивной терапии, тем самым обеспечивая своевременную и точную медицинскую помощь.

Выводы

«Благодаря своевременному целевому лечению, быстрое секвенирование генома может улучшить результаты тяжелобольных детей с генетическими заболеваниями», — объясняет Стивен Кингсмор.

Авторы другого исследования утверждают, что эпигенетические методы лечения могут спровоцировать развитие агрессивных опухолей.

Приглашаем подписаться на наш канал в Яндекс Дзен


 
Рейтинг
( Пока оценок нет )
Руслан Хусаинов/ автор статьи
Должность - Главный редактор, автор статьей E-mail для связи - [email protected] Врач - ультразвуковой диагностики, детский травматолог-ортопед  г. Санкт-Петербург.
Понравилась статья? Поделиться с друзьями: